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Abstract. The concentration dependence of the high temperature antiferrodistortive (afd) phase
transition temperatureTC in single crystals of the mixed crystal system betaine phosphate and
betaine phosphite (BP1−xBPIx ) is studied. New experimental data obtained by2H nuclear magnetic
resonance (NMR) spectroscopy on deuterated single crystals of this system confirm the nonlinear
behaviour ofTC(x), in particular the maximum at intermediate concentrations. A microscopic
model is proposed which in extension of the treatment of a small defect concentration makes use of
the virtual crystal approximation (VCA) to be applicable to the mixed crystal system DBP1−xDBPIx
with finite concentrationsx. By this means the experimentally observed behaviour of the afd phase
transition temperature as a function ofx is elucidated and the nonlinear behaviour ofTC(x) is
explained in agreement with the afd character of the transition.

1. Introduction

The influence of defects on the static and dynamic behaviour in a crystal undergoing a structural
phase transition has been experimentally and theoretically investigated in the past two decades
[1–4] for fundamental reasons, e.g. phase behaviour and transition temperatures. Many
ferroelectrics which are then subject of those investigations, due to their interesting electrical
and elastic properties, have been studied with respect to defect influences as well. A group
of these ferroelectrics, the components of which are connected by hydrogen bonds and to
which also a number of betaine compounds belong, is of general interest. In this framework
recently the mixed crystal system of betaine phosphate and betaine phosphite was investigated
for different finite concentrationsx [5]. This mixed crystal system can be considered as being
derived from the pure substances by introducing small or finite defect concentrations of the
respective other compound.

The properties of betaine phosphate (BP),(CH3)3NCH2COOH3PO4, betaine phosphite
(BPI),(CH3)3NCH2COOH3PO3 and the respective deuterated compounds (DBP and DBPI), as
well as the mixed crystal system DBP1−xDBPIx , have been studied extensively during recent
years using x-ray, dielectric [6–13] and magnetic resonance techniques [14–17]. Together
with other ferroelectrics which also contain hydrogen bonds, these crystals are considered to
be model substances for the study of the phase behaviour and of structural phase transitions.
Detailed knowledge of the structure (unit cell parameters, space groups etc) is available [6].
For our purpose the specification of the local deuterium lattice sites for DBP1−xDBPIx is
shown for a sequence of one DBP and two DBPI molecules in figure 1. The betaine molecules
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Figure 1. Structure of DBP1−xDBPIx in the antiferrodistortive phase. A sequence of one DBP
and two DBPI molecules is shown. The deuterated lattice sites are indicated for one formula unit
according to [6].

are arranged approximately perpendicular to the chains and are connected to the phosphate
and phosphite tetrahedra by two hydrogen bridges (O5–H14–O1 and O2–H12–O3) and one
hydrogen bond (O2–H12–O3), respectively [6]. In DBPI the fourth deuteron is directly bound
to the phosphorus atom (P–H14). Various details with respect to the different phases have been
revealed in these previous works. For instance, in a study of the structural phase transition
from a paraelastic high temperature phase (pe) to an antiferrodistortive phase (afd) at 365 K
[7] and 355 K [8] for the pure DBP and DBPI components, respectively, it was found that the
phase transition temperatures approximately did not change in case of deuteration. One aspect
of recent2H NMR studies on the system DBP1−xDBPIx was the investigation of this high-
temperature afd phase transition. These studies [5] suggest a quite remarkable dependence
of the afd phase transition temperatureTC on the concentrationx, i.e. a nonlinear behaviour
with a maximum ofTC at an intermediate concentration. For a first interpretation a simple
microscopic model, based on the common model of coupled anharmonic oscillators [18, 19],
was used successfully in order to arrive at a preliminary explanation of the dependence ofTC
onx.

The aim of this paper consists at first in an experimental confirmation of the behaviour of
TC(x) mentioned above by additional2H NMR measurements on deuterated single crystals
of DBP1−xDBPIx . These studies were performed for more values ofx, in particular at
intermediate concentrations near the supposed maximum ofTC . In extension of the previous
work we also suggest using a different model (spherical-like model) which not only allows
us in principle to calculate the phase transition temperature in the perfect crystal from the
lattice parameters, but which is also fully consistent with the antiferrodistortive character of
this transition. In our proposed model except the virtual crystal approximation (VCA) [20]
no other approximation has to be used for the explanation of the concentration behaviour of
TC . To demonstrate this procedure we point out first (section 2.1) the important steps in the
application of our spherical-like model to the static and dynamic behaviour of the considered
two-component solid solution. Then in section 2.2 we discuss the limiting case of a perfect
crystal and generalize these results to the case of any mixed crystal DPB1−xDBPIx . To obtain
the microscopic parameters for our system we again make use of the VCA. Following this
line, in section 3 we shall study the correspondence of theory and experiment where the
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main question will be whether a good agreement of the predictions of our model with the
experimentally obtained nonlinearTC(x) behaviour can be achieved.

2. Theory

2.1. Model

To investigate the influence of a defect in a crystal with a structural phase transition, we
propose the Hamiltonian of the spherical-like model (Becket al [21]). Under all microscopic
models investigated, only in the spherical-like model are the assumptions of the mean-field
approximation satisfied. Since in our NMR experiments the concentration dependence ofTC
is fairly weak, we cannot use another model (e.g. the84 model) to explain this dependence
because then the influence of fluctuations nearTC cannot be adequately described within this
small temperature range. As shown e.g. in [21], in the classical limit this model describes a
phase transition with a one-component order parameter. We would like to mention that an
analogous situation was encountered for the explanation of the quantum effects in structural
phase transitions. Here the spherical-like model was both successfully used and theoretically
investigated [21–24]. For our case of a two-component solid solution BP1−xBPIx we use the
following form:

H =
∑
j

(
P 2
j

2mj
− Aj

2
Q2
j

)
+

1

4

∑
j,k

fjk(Qj −Qk)
2 +

Bj

4N

(∑
j

(Qj )
2

)2

−
∑
j

(F + δFj (t))Qj ≡ H0 −
∑
j

δFj (t)Qj . (1)

HereQj andPj are the local normal coordinate and the conjugate momentum of a particle
with ‘effective mass’mj at a lattice siteERj of a three-dimensional cubic lattice, respectively.
These parameters approximately describe the critical vibrations in the crystal (see, e.g. the
well-known book of Lines and Glass [18]). The quantityAj > 0 is the parameter of the local
harmonic single-site potential,Bj/N simulates an infinitely weak (for a number of particles
N → ∞), but infinite range of anharmonic interactions. Considering further the proposed
model Hamiltonian,fjk describes a harmonic interaction between the particles, which has to
fulfill the condition 0<

∑
l 6=k flk ≡ f0 <∞. F andδFj (t) are the static and dynamic parts

of some external force acting at the lattice siteERj , denoted by the subscriptj in the following
considerations, respectively. The effective mass in each lattice point can be expressed in the
following way:

mj = m1 Aj = A1 andBj = B1 if site j is occupied by BP unit cells (2a)

and

mj = m2 Aj = γA1 andBj = κB1 if site j is occupied by BPI unit cells. (2b)

All quantitiesfjk are finite 06 |fjk| <∞ and have the following values:

fjk = f (1,1)jk if the sitesj andk are occupied by BP unit cells

fjk = f (1,2)jk = f (2,1)jk if the sitesj andk are occupied by different unit cells

fjk = f (2,2)jk if the sitesj andk are occupied by BPI unit cells.

The static partQ̄j and the linear response partδQ̄j (t) of the statistical mechanical average
can be calculated exactly in the thermodynamic limit (N →∞) with the help of the response
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functionχjk(t − t ′) which is given by the Green function〈〈Qj(t),Qk(t
′)〉〉 (see e.g. [20])

χjk(t − t ′) = 1

2π

∫ ∞
−∞

χjk(ω) e−iω(t−t ′) dω = −〈〈Qj(t) | Qk(t
′)〉〉 (3)

where

〈〈Qj(t),Qk(t
′)〉〉 = − 1

ih̄
θ(t − t ′)[Qj(t),Qk(t

′)]. (4)

Here the average〈. . .〉 is over an equilibrium position andθ is the unit step function. Indeed,
from the lattice dynamics we determine theQ̄j by the requirement

d

dt
〈Pj 〉 = i

h̄
〈[H0, Pj ]〉 = 0 (5)

and from the response theory [20] we find the Fourier transform ofδQ̄j (t)

δQ̄j (ω) =
∑
k

〈〈Qj | Qk〉〉ωδFk(ω). (6)

Here in equations (5) and (6) the exact expressions forQ̄j are given by the statistical relationship
Q̄j = −(∂fN/∂F ), wherefN is the free energy of the considered system (1). Consequently
we obtain the following expression for an infinitesimal change, dQ̄j , of the static displacement
in dependence on an infinitesimal change of the external field dF

dQ̄j = 1Qj

T
dF = χjj (0) dF. (7)

Here the fluctuations1Qj are given according to the fluctuation–dissipation theorem by the
relationship

1Qn = kBTReχnn(ω = 0) > 0. (8)

Hence, the quantity|dQj | increases with rising|dF |. Q̄j is a continuous function ofF .
Using the results obtained in the thermodynamic limit by Schneideret al [21, 22] one can

write the solutions of equations (5) and (6) in the following form [26]. Here we have used the
exact relationshipX = limω→0 χ(ω) between the static (X) and dynamic (χ(ω)) part of the
susceptibility [21] for the spherical-like model:∑

k

(χ−1(0))j,kQ̄k = Fj (9)

and ∑
k

(χ−1(ω))jk δQ̄k(ω) = δFj (ω). (10)

Here the inverse susceptibilities(χ−1(ω))jk are determined by the relationship

(χ−1(ω))jk = Bj

N

∑
n

(Q̄2
n +1Qn)− Aj + f0 − fEq − ω2. (11)

A structural phase transition occurs if for a vanishing static external field (F → 0) equation (9)
has solutionsQ̄k 6= 0 below the phase transition temperatureTC .

In carrying out the calculations below, reduced units will be used, in which as starting point
the energy of our system (1) is measured in units of the depth of the single-site double-minimum
potential(A1)

2/B1 in the BP unit cells (see e.g. [27, 28]).
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2.2. Phase transition temperature of the antiferrodistortive structural phase transition

2.2.1. Perfect crystal. To solve equations (9) to (11) in the perfect crystal forF → 0 let
us assume at the beginning that they have an antiferrodistortive solution(Q̄

(p)

j = −Q̄j+Ea =
Q̄
(p)

j+2Ea)and then prove it. (The index (p) indicates a perfect lattice.) In this case the square of the
averaged static displacements, the fluctuations, the coupling constants and the dynamic single-
site susceptibilities are invariant with respect to translations, 2Ea (Q̄2

n = Q̄2, 1Qn = 1Q,
fjk = f|j−k| and(χ−1(ω))lk = (χ−1(ω))|l−k|). Consequently, we obtain from equation (11):

χ
(p)

jk (ω) =
1

N

∑
Eq

exp(i Eq( ERj − ERk))
Q̄2 +1Q− 1− f0 − fEq − ω2

= 1

N

∑
Eq
χEq(ω) exp(i Eq( ERj − ERk)) (12)

where

fEq =
∑
k 6=j

fjk ei Eq( ERj− ERk). (13)

To include the effects of damping, we introduce a phenomenological damping0 [21], caused
by random time-dependent forces, and obtain then for the dynamic susceptibility the following
expression:

χ
(p)

Eq (ω) = 1

ω2
Eq − ω2 − i0ω

= ω2
Eq − ω2

(ω2
Eq − ω2)2 + 02ω2

+ i
0ω

(ω2
Eq − ω2)2 − 02ω2

(14)

where according to equation (12)

ω2
Eq = Q̄2 +1Q− 1 +f0 − fEq . (15)

Taking into account that in the perfect lattice(1/N)
∑

n(Q̄
2
n +1Q) ≡ Q̄ +1Q equation (15)

shows that the frequency of each oscillator in the considered model depends on all anharmonic
interactions.

As can be shown in a straightforward manner, the real part of the dynamic susceptibility
(equation (14)) has no extreme as a function ofEq andT . On the other hand, the imaginary part
of it (equation (14)) passes a minimum atT for any Eq, if

ω2 = ω2
Eq=Eqcr ≡ Q̄2 +1Q− 1= T 1

N

∑
Eq

1

Q̄2 +1Q + f0 − fEq
− 1= 0. (16)

Equation (9) with equation (12) can be solved by the Fourier transformation in the real space.
Using for this purpose together with equation (12) the relation

Q̄l = 1√
N

∑
Eq

exp iEq ERl (17)

we obtain that a solution̄Q(p)

j = −Q̄(p)

j+Ea = Q̄
(p)

j+2Ea ≡ Q̄ 6= 0 with 1Q(p)

j = 1Q
(p)

j+Ea =
1Q

(p)

j+2Ea ≡ 1Q exists at(EaEqcr) = 1, if here the mode softens:fEqcr = f0. Explicitly one can
write

Q̄ ≡
∑
k

χ
(p)

jk (0)F =
F

Q̄2 +1Q− 1
(18)

where according to equations (10) and (15)

1Q = T 1

N

∑
Eq

1

1Q− 1 +f0 − fEq . (19)
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Consequently, with this finding our assumption proposed at the beginning of this section is
proved.

If (1Q− 1) < 0, then for all|F | > 0 equation (17) has only one real root, the absolute
value of which continuously increases with increasing|F | according to equation (7). The sign
of this root depends on the sign ofF . For|F | → 0 this distortion approaches a finite value. In
the case(1Q−q) > 0 also one real root of equation (18) exists with the same properties with
respect to the change ofF . This solution vanishes if|F | → 0. For a vanishing static external
field equation (18) provides a non-vanishing valueQ̄ only, if the expression in the denominator
goes to zero, and therefore we obtain, from equation (18) with equation (19), finally the result

Q̄ =
√

1− T 1

N

∑
Eq

1

f0 − fEq (20)

for the averaged static displacements. This equation gives us the possibility to determine the
phase transition temperature (forQ̄ = 0) to beTC = ((1/N)

∑
Eq [1/(f0 − fEq)])−1. This

derivation of the temperature dependence of the order parameter (averaged static displacement
Q̄) on a microscopic level (equation (20)) will be discussed again in section 3.2.

2.2.2. The two-component solid solution in the virtual crystal approximation.The Dyson
equation for the two-component solid solution can be written in the form

χjk(ω) = χ(p)jk (ω) +
∑
nn

χ
(p)

jn (ω)Vnn′(ω)χ
(p)

n′k (ω)

+
∑
nn′

∑
mm′

χ
(p)

jn (ω)Vnn′(ω)χ
(p)

n′m(ω)Vmm′(ω)χ
(p)

m′k(ω) + · · · (21)

with

Vnn′(ω) = (χ−1(ω))nn′′ − ((χ(p)(ω))−1)nn′ . (22)

To carry out the configuration-averaged dynamic susceptibilityχ(ω)
conf

jk in the VCA (see
e.g. Elliott et al [20]) it is assumed that the perturbation termsVnn′(ω) in the power series
(equation (21)) are configuration averaged independent of each other. This approximation
is applicable if the inequalityVnn′(ω) � 1 holds. After this average the considered series
(equation (21)) are translationally invariant and we obtain:

χ(ω)
conf (VCA)

Eq = 1

(Q̄VCA)2 +1Q̄VCA − AVCA/BVCA + f VCA0 − f VCAEq − ω2AVCA/mVCA
.

(23)

Here we have introduced the following notations:

Q̄VCA = (1− x)Q̄1 + xQ̄2

1QVCA = TReχ(ω→ 0)
conf (VCA)

jj

AVCA = (1− x)A1 + xA2

A1
= (1− x) + xγ

BVCA = (1− x)B1 + xB2

B1
= (1− x) + xκ

f VCAjk = (1− x)2f (1,1)jk + 2x(1− x)f (1,2)jk + x2f
(2,2)
jk

mVCA = (1− x)m1 + xm2

m1
(24)
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wherex is the configuration-average of the occupation number of the elementary cell of BPI,
i.e. its concentration. According to equation (23) we get for the considered solid solution at
TC(Q̄

VCA = +0, 1−1QVCA = +0):

TC(x) = (1− x) + xγ

(1− x) + xκ

(
1

N

∑
Eq

1

f VCA0 − f VCAEq

)−1

. (25)

For a Debye type dispersion law equation (25) provides:

TC = (1− x) + xγ

(1− x) + κx

2π2

(6π2)1/3
f VCA0 = (1− x) + γ x

(1− x) + κx

f VCA0

f
(1,1)
0

TC(x = 1). (26)

Let us emphasize that the exact expression for the determination ofTC within the perfect
spherical-like model in the thermodynamic limit (equation (25)) is equivalent to the
corresponding expression approximately obtained by Bruce and Cowley [19] within the
framework of the model of coupled anharmonic oscillators (see e.g. [18, 19]). Indeed, taking
into account that the inverse sum of equation (25) is in the Debye approximation proportional
to f0, we obtain the same resultTC(x = 0) = f0 in our units. In contrast to these authors,
however, in our model the equilibrium equation (5) can be solved exactly.

The phase transition temperature is proportional to the product of the width of the
single-particle double-minimum potential and the characteristicf0 of coupling constants
(equation (13)):TC ∝ f0 (in our notation). It should be stressed as well that in the latter
model this result is closely connected with the so-called independent-site approximation in the
order–disorder case (f0 � 1) or with the independent-mode approximation in the displacive
situation (f0� 1), which both fail nearTC as clearly demonstrated by the same authors.

3. Correspondence of theory and experiment

3.1. NMR experiments at the high temperature phase transition in DBP1−xDBPIx

After we have tuned the spherical-like model to our system under study we shall, prior
to its application, demonstrate the new experimental results on the high temperature
antiferrodistortive (afd) phase transition in DBP1−xDBPIx , derived from our2H NMR studies.
In a recent paper [5] this phase transition temperature from the afd to the paraelectric phase (pe)
was determined by means of temperature dependent2H NMR measurements on single crystals
of different representatives of the system DBP1−xDBPIx . Only a preliminary dependence of
the high temperature phase transition on the phosphite concentrationx could be obtained in
this way in which the availableTC(x) data pointed towards a nonlinear dependence, withTC
exhibiting a maximum at or near the middle of the mixed crystal row. However, due to the
lack of crystals with concentration values of 0.15< x < 0.6 the results remained insufficient
and the supposed maximum atx = 0.5 could not be checked.

This drawback is now overcome by means of additional measurements on recently grown
crystals withx = 0.3 andx = 0.5, allowing us to obtain a more reliable phase diagram
in the above sense. Furthermore, the temperature for the phase transition could now be
calibrated more exactly by means of comparison to ultrasonic measurements on DBPI [29],
which allow a precise determination ofTC . For each crystal the phase transition temperature
TC(x) was determined from a set of2H NMR spectra which were measured in dependence on
the temperature in the same manner as described in [5]. Therefore,TC could be determined with
an error of less than 0.2 K. The newTC(x) dependence, which allows more precise conclusions
on the nonlinearity, is shown in figure 2. First, it is evident that the nonlinear behaviour with
a single maximum is clearly confirmed. It follows furthermore, that the difference inTC
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K
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Figure 2. Phase transition temperatureTC as a function of the phosphite concentrationx
for different representatives of the system DBP1−xDBPIx . The temperature was calibrated on
ultrasonic measurements on DBPI [29]. Experimental data (dots) are fitted by two parameter sets
of our model.

between pure DBP and DBPI is indeed only∼7.5 K, indicating a slight deviation from the
expected value of 10 K [7, 8]. From the detected maximum the phase transition temperature
TC decreases to 363.7 K (pure DBP) and 356.3 K (pure DBPI), with the decrease towards
pure DBPI being steeper. Although we could very accurately determine both the temperature
differences and the absolute temperature values, it still remains an uncertainty with respect to
the concentrationsx. The valuesx which we use throughout this work are the nominal ones,
i.e. those values which are characteristic for the growing solution. It has been shown, however,
that the real concentrations in the crystals are likely to be shifted towards lower values (lower
DBPI concentration) [12]. Unfortunately, no quantitative correction is possible, but from the
line width analysis of our2H NMR spectra we can clearly confirm this tendency, the effect
of which is most prominent at intermediate concentrations. The necessary correction of thex

values is indicated forx = 0.5 in figure 2, where the arrow only gives a qualitative impression.
We shall mention as well that the qualitativeTC(x) dependence was preliminarily confirmed
by ultrasonic measurements on further crystals with differentx values by the authors of [29].

3.2. Application of the model to the afd phase transition in DBP1−xDBPIx

The exact expression for the determination ofTC within the perfect spherical-like model in
the thermodynamic limit (equation (25)) is applied to the DBP1−xDBPIx mixed crystal system
to elucidate the nonlinear behaviour ofTC(x) under the assumption that the dynamics of our
mixed crystals can be approximately considered as those of the spherical-like model with two
sorts (α = 1, 2) of lattice parameters as described at the beginning (equations (2a)–(2b)). To
elucidate the concentration dependence ofTC we assume for simplicity thatf (1,1)jk = f

(2,2)
jk
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and obtain then with equation (26)

TC(x) = TC(x = 1)
[(1− x)/γ ] + x

[(1− x)/κ] + x
[1 + 2x(1− x)1f ] (27)

with 1f = (f
(1,2)
0 − f (1,1)0 )/f

(1,1)
0 andx being the concentration of component 1 (DBPI in

our case).
From the three parametersκ, γ and1f of equation (27) the ratioγ /κ = TC(x =

0)/TC(x = 1) is given by the experiment and equals 0.9796. Thus, for fitting this model to
the measuredTC values two independent parameters remain. In fact, the fit can be executed
in different ways. Two fit curves are given in figure 2 from which the correspondence of the
experimental data to the model can be judged. Curve (1) was obtained by the best least mean
squares fit of all three parameters to the experimental data points. Our experimental results
are sufficiently well reproduced, although we observe the biggest deviations at intermediate
concentrations. If we have in mind the concentration corrections towards lowerx values,
however, we may expect a better correspondence, since in particular the data points in the
intermediate concentration region move towards the fit curve. A different possibility to apply
our model is realized with curve 2. Here, the values forx1 = 0.7 andx2 = 0.05 were inserted
in equation (27), and the resulting equation system was solved to determine the two remaining
free parametersγ and1f . The result of this procedure gives a good approximation of the
experimentalTC values as well, although the same remarks with respect to the concentration
values apply for this curve.

It is important to remark that for both cases the decisive common property is the qualitative
description in that sense that from our approach necessarily follows thatTC must go through
a maximum. Thus, in accordance with the experiment a nonlinear dependence ofTC on
x with a maximum at or near the valuex = 0.5 is described by our model. For a better
understanding of the physical contents of this behaviour we consider equation (27). Although
the TC(x) dependence cannot be explained in a straightforward manner according to the
dependence onκ andγ , we may find an interpretation as follows. Taking now into account
that TC(x = 0) ≈ TC(x = 1)(κ ≈ γ ), this relation points towards the importance of the
occurrence of a long-range order. The latter depends, according to equation (27), on the value
of the coupling constant, the value of which is maximal if the concentration is 0.5, as can
be inferred from this equation. This implies the highest phase transition temperature at this
concentration (at nominal DPB0.4DBPI0.6 for our available crystals).

Let us here still notice the following important fact: the heuristic criterion of the validity of
the VCA stated above (Vnn′ � 1) is fulfilled according to equations (27) and (25), respectively.
Consequently, this approximation within the framework of the spherical-like model can be
used for the description of the considered solid solution. Our proposed model guarantees the
correct description of the experimentally observed afd character (doubling of the unit cell)
of the transition and is also in agreement with the experimentally established order–disorder
behaviour, where a soft mode does not exist belowTC .

This consistent description of the phase transition in our mixed crystal system tackles the
situation from a more theoretical side as compared to previous NMR studies [17]. Since
it describes the microscopic origin of the experimental behaviour shown by the betaine
phosphate and betaine phosphite molecules, it suggests the following discussion for a deeper
understanding of the system. In [17] the character of the phase transition was set into relation
to the different occupation probabilities of two betaine molecule positions tilted in opposite
directions with respect to the mirror plane. The most straightforward assumption claimed in the
previous paper was that the statistically averaged difference of these probabilities,p(TC −T ),
is directly proportional toQ̄, where the betaine units give the most important contribution to
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the local normal co-ordinate. However, in this interpretation we have to note the apparent
discrepancy with respect to the critical exponentβ for the order parameter̄Q (β = 0.5 in
our case, see equation (20), in an arbitrary broad region belowTC) and the apparent critical
exponent 0.25± 0.03 measured for the quantityp(TC − T ) by means of NMR (in a region
from 0.4 K up to 15 K belowTC). We explain the reason for this behaviour, that the probability
p(TC − T ) is not linearly related to the order parameterQ̄(T ), but is rather given by the
dependencep(TC−T ) = f [Q̄(T )]. Therefore knowing the temperature dependence ofQ̄ for
the proposed microscopic model of the structural phase transition (equation (27)) we can find
the temperature dependence ofp(TC − T ) from the relation above, i.e. the critical exponent
β is one half in complete agreement with the exponent for specific heat [17]. However, the
microscopic nature of the order parameter, which we previously suggested to be directly related
to the order–disorder behaviour of the betaine units, is not identical with the average tilt angle
proportional to the probabilityp(TC − T ). It is also interesting to note again that in the paper
[17] we also have tried to understand the apparent critical exponent close to 0.25 in terms of
a tricritical behaviour according to the Landau theory [30]. In this case, in the Landau theory
the expression for the free energy up to terms of sixth order has to be considered, which is in
clear contrast to the results of the present theoretical treatment.

To conclude, we shall emphasize again that the concentration dependence of the high
temperature afd phase transition temperatureTC in single crystals of the mixed crystal system
BP1−xBPIx can be theoretically explained by means of the microscopic spherical-like model
in good consistence with the experiment.
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